National Repository of Grey Literature 18 records found  1 - 10next  jump to record: Search took 0.00 seconds. 
Mathematical models in hydromechanics (and aerodynamics)
Ježková, Jitka ; Zatočilová, Jitka (referee) ; Nechvátal, Luděk (advisor)
Bachelor thesis is a summarizing text which deals with the state and the motion of ideal liquid and gas. The main goal is to derive Euler equations describing the flow of fluids. From these equations we can obtain Bernoulli equation that is directly used to solve problems of fluid flow. The next step is to derive the continuity equation expressing the fact that the mass is preserved in the system. In the case of ideal gas the state equation of ideal gas is added and therefore solutions of various types of tasks of hydrodynamics and aerodynamics can be achieved.
Realistic Smoke Animation
Zubal, Miloš ; Španěl, Michal (referee) ; Sumec, Stanislav (advisor)
This work makes basic analysis of historical and current algorithms for smoke animation. Modern approaches to rendering volumetric data are briefly described. We choose algorithms for implementation on basis of this analysis. These algorithms are described in detail and we make emphasis on their important properties according to dedication of this work. Detailed description of implementation follows along with performance measurement. Conclusion evaluates results of work and proposes possible extensions.
Goal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equations
Roskovec, Filip ; Dolejší, Vít (advisor) ; Kanschat, Guido (referee) ; Zeman, Jan (referee)
A posteriori error estimation is an inseparable component of any reliable numerical method for solving partial differential equations. The aim of the goal-oriented a posteriori error estimates is to control the computational error directly with respect to some quantity of interest, which makes the method very convenient for many engineering applications. The resulting error estimates may be employed for mesh adaptation which enables to find a numerical approximation of the quantity of interest under some given tolerance in a very efficient manner. In this thesis, the goal-oriented error estimates are derived for discontinuous Galerkin discretizations of the linear scalar model problems, as well as of the Euler equations describing inviscid compressible flows. It focuses on several aspects of the goal-oriented error estimation method, in particular, higher order reconstructions, adjoint consistency of the discretizations, control of the algebraic errors arising from iterative solutions of both algebraic systems, and linking the estimates with the hp-anisotropic mesh adaptation. The computational performance is demonstrated by numerical experiments.
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor) ; Janovský, Vladimír (referee)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equations for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi-implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numerical scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. Powered by TCPDF (www.tcpdf.org)
Exact and approximate Riemann solvers for the Euler equations
Živčáková, Andrea ; Kučera, Václav (advisor) ; Felcman, Jiří (referee)
In this work we deal with the solution and implementation of the problem of solving a partial differential equation with a piecewise constant initial condition, the so-called Riemann's problem. Specifically, we study the equations of conservation laws describing inviscid adiabatic flow of an ideal gas - the Euler equations. After some investigation, we show that these equations can be transformed to a quasilinear hyperbolic partial differential equation of first order. We are especially interested in the one-dimensional Euler equations for which we want to get an analytically exact Riemann's solver. The solution is found by investigation of properties of waves, namely rarefaction waves, shock waves and contact discontinuities were treated. The output of this work is a program in C for finding the exact Riemann's solver for one-dimensional Euler equations. The program is based on a theoretical analysis summarized in the first two chapters, and is tested on standard test data. The theory is based on the books [1] and [2].
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equati- ons for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi- implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numeri- cal scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. 1
Realistic Smoke Animation
Zubal, Miloš ; Španěl, Michal (referee) ; Sumec, Stanislav (advisor)
This work makes basic analysis of historical and current algorithms for smoke animation. Modern approaches to rendering volumetric data are briefly described. We choose algorithms for implementation on basis of this analysis. These algorithms are described in detail and we make emphasis on their important properties according to dedication of this work. Detailed description of implementation follows along with performance measurement. Conclusion evaluates results of work and proposes possible extensions.
Goal-oriented a posteriori error estimates and adaptivity for the numerical solution of partial differential equations
Roskovec, Filip ; Dolejší, Vít (advisor) ; Kanschat, Guido (referee) ; Zeman, Jan (referee)
A posteriori error estimation is an inseparable component of any reliable numerical method for solving partial differential equations. The aim of the goal-oriented a posteriori error estimates is to control the computational error directly with respect to some quantity of interest, which makes the method very convenient for many engineering applications. The resulting error estimates may be employed for mesh adaptation which enables to find a numerical approximation of the quantity of interest under some given tolerance in a very efficient manner. In this thesis, the goal-oriented error estimates are derived for discontinuous Galerkin discretizations of the linear scalar model problems, as well as of the Euler equations describing inviscid compressible flows. It focuses on several aspects of the goal-oriented error estimation method, in particular, higher order reconstructions, adjoint consistency of the discretizations, control of the algebraic errors arising from iterative solutions of both algebraic systems, and linking the estimates with the hp-anisotropic mesh adaptation. The computational performance is demonstrated by numerical experiments.
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equati- ons for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi- implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numeri- cal scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. 1
Numerical solution of equations describing the dynamics of flocking
Živčáková, Andrea ; Kučera, Václav (advisor) ; Janovský, Vladimír (referee)
This work is devoted to the numerical solution of equations describing the dynamics of flocks of birds. Specifically, we pay attention to the Euler equations for compressible flow with a right-hand side correction. This model is based on the work Fornasier et al. (2010). Due to the complexity of the model, we focus only on the one-dimensional case. For the numerical solution we use a semi-implicit discontinuous Galerkin method. Discretization of the right-hand side is chosen so that we preserve the structure of the semi-implicit scheme for the Euler equations presented in the work Feistauer, Kučera (2007). The proposed numerical scheme was implemented and numerical experiments showing the robustness of the scheme were carried out. Powered by TCPDF (www.tcpdf.org)

National Repository of Grey Literature : 18 records found   1 - 10next  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.